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Abstract: Traditionally, models used in air traffic flow management are based on
simulating the trajectories of individual aircraft. While practical, this approach does not
offer any insights into the dynamics of the traffic flow. Recently, two different
approaches, (1) aggregate traffic model approach and (2) Eulerian model approach, have
been presented to generate linear dynamic models that represent the behaviour of the air
traffic flow. The dimension of the linear models is independent of the number of aircraft
in the system and depends on the spatial discretization of the airspace. The resulting
linear models can be used both for the analysis and synthesis of traffic flow management
techniques.
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1. INTRODUCTION

Demand for air transportation has seen a six-fold
increase in the past 30 years and estimates call for a
strong average growth rate of 4.7% during the next
20 years (Airbus, 2002). This increase in demand
will put a further strain on the airports and sectors
within the National Airspace System (NAS). The
United States Congress has recognized the impact of
unmet increased demand and has established a Joint
Planning Office for creating and developing a Next
Generation Air Transportation System to transform
NAS operations. There are more than 40,000
commercial flights operated in the U. S. airspace
alone on a typical day at the present time.  In order to
ensure that this traffic moves smoothly and
efficiently in the presence of disruptions caused by
convective weather and airport conditions,
innovative modeling and design methods are needed
in traffic flow management (TFM).

Currently, air traffic flow prediction is done by
propagating the trajectories of the proposed flights
forward in time and using them to count the number
of aircraft in a region of the airspace. The Center
TRACON Automation System (CTAS) and the
Future Automation Concepts Evaluation Tool

(FACET) (Bilimoria, et al., 2001) use this physics-
based modelling approach for demand forecasting.
The accuracy of these predictions is impacted by
departure and weather uncertainties (Muller and
Chatterji, 2002; Evans, 2001). These trajectory-based
models predict the behaviour of the NAS adequately
for short durations of up to 20 minutes. With the
short prediction accuracy, it is difficult, if not
impossible, to make sound strategic decisions on air
traffic management.

For instance, a strategic TFM decision may involve
rerouting all aircraft originating from the west coast,
heading to airports on the east coast, to deal with
anticipated stormy weather conditions near Chicago
over the next 4 hours. Strategic TFM is a hierarchical
system consisting of large number of states, and
operating over time scales extending from a few
hours to 24 hours. As shown in Figure 1, the airspace
in the United States is divided into 20 Centers in the
continental United States plus one each in Alaska and
Hawaii. The flow relationship between neighboring
Centers is shown via links in Figure 1. For example,
the figure shows that Kansas City Center (ZKC)
receives and sends traffic to the Minneapolis Center
(ZMP). Proper mixes of strategic and tactical flow



controls initiated by the System Command Center
and the 22 Control Centers accomplish TFM in the
U. S. Some of the frequently used flow restrictions
include ground stop, ground delay, metering (miles-
in-trail and time based) and rerouting.  Dispatchers
and air traffic coordinators at airlines respond to
these flow control actions by rescheduling and
canceling flights, thus, changing flow patterns.

Figure 1: The Centers in Continental US Airspace.

Since strategic TFM requires control of flows of
aircraft rather than individual aircraft, an aggregate
model of traffic flow that does not use trajectories of
individual aircraft is desirable. Strategic TFM can be
substantially improved by the development of
simpler, but more accurate models that allow the
exploitation of different analysis and synthesis
techniques from Systems Theory.

Recently, two different approaches, (1) aggregate
traffic model approach (Sridhar, et al., 2004) and (2)
Eulerian model approach (Menon, et al., 2003;
Menon, et al., 2004) have been presented to generate
linear dynamic system models (LDSM) to represent
the behaviour of the air traffic flow. The aggregate
model uses flow relationship between adjacent
Centers (Roy, et al., 2003). The LDSM in (Roy, et
al., 2003) is built by counting the number of aircraft
entering a Center from an adjacent Center, number of
aircraft leaving a Center for a neighboring Center
and the numbers of aircraft landing and taking off
within a Center. Input to this model consists of the
number of departures. Results presented in (Roy, et
al., 2003), assuming that departures follow a Poisson
distribution, show that the resulting numbers of
aircraft in the Centers also fit a Poisson distribution.
The main limitation of the results in (Roy, et al.,
2003) is that modeling departures from Poisson
distributions (albeit a different one for each major
hub airport) ignores the fact that departure counts
vary significantly during the day as banks of aircraft
arrive and depart major hub airports. Aircraft counts
in the Centers, forecast by LDSM, can be improved
significantly by accounting for the nominal departure
rates as a function of time and augmenting them by

modeling departure uncertainty about these nominal
rates.

The basic time-invariant LDSM proposed in (Roy, et
al., 2003) has been extended to a time-varying
system in (Sridhar, et al., 2004). Instead of a single
state transition matrix, several state transition
matrices (one for each hour) were used to cover the
entire prediction period. State transition matrices
were computed using historical air traffic data. The
resulting model was then driven by average departure
rates, also derived from historical air traffic data, to
predict aircraft counts in the 23 airspace regions.
These 23 regions consisted of 20 Centers in the
continental United States, one each covering Hawaii
and Alaska, and one for the international airspace.
Uncertainty bounds around these nominal predictions
were then obtained using the standard state
covariance propagation model driven by the
covariance of departure counts. Day-to-day
variations about the average departure counts are
assumed to be zero-mean Gaussian random variables.
Results are presented for another day of traffic data
(other than the four days used in LDSM) to show that
these counts lie within the confines of the mean
aircraft counts predicted by the LDSM and
uncertainty bounds generated by the covariance
propagation technique.

The development of an Eulerian (Prandtl and
Tietjens, 1957) approach to modeling air traffic was
discussed in recent research efforts (Menon, et al.,
2002; Menon, et al., 2003). A computer-aided
methodology for deriving Eulerian models of the
airspace, and employing it for air traffic flow control
is described in (Menon, et al., 2004). The approach
uses FACET software as its foundation.

The Eulerian  approach models the airspace in terms
of line elements approximating airways, together
with merge and diverge nodes. Since this modeling
technique spatially aggregates the air traffic, the
order of the airspace model depends only on the
number of line elements used to represent the
airways, and not on the number of aircraft operating
in the airspace. Eulerian models are in the form of
linear, time-varying difference equations.

The one-dimensional modeling methodology is an
intuitive approach for deriving models of traffic flow
networks formed by jet routes and Victor airways.
However, not all aircraft in the airspace strictly
follow the jet routes or Victor airways. This
introduces the need for a more flexible modeling
framework. This framework, first advanced in
(Menon, et al., 2002), discretizes the airspace into
surface elements (SELs), within which the traffic
flow is aggregated into eight different directions.
This modeling provides adequate fidelity in en route
airspace where the traffic flow is largely two
dimensional. The traffic at all flight levels in Class A
airspace (at or above 18,000 ft) is classified as
belonging to any one of these eight directions, with
inflows and outflows from airports and other external



sources. Each surface element is connected to its
eight neighbors, with the connection strengths being
determined by the actual traffic flow patterns.

The main strength of the LDSM described here is
that all the tools available for analysis of linear
dynamic systems can be applied to this model. The
size of the linear models is independent of the
number of aircraft in the system and depends on the
number of control volumes used to represent the
airspace.

The rest of the paper is organized as follows: The
aggregate flow model is described in Section 2.
Section 3 describes the Eulerian model. Section 4
compares the relative strengths of the two linear
models. Finally, concluding remarks are given in
Section 5.

2. AGGREGATE FLOW MODEL

A linear dynamic model for the air traffic in the NAS
is developed in this section. This model can be used
for predicting traffic count, which is the number of
aircraft in a given Air Route Traffic Control Center,
in the 22 Centers in the United States and one
international region. The resulting traffic count
forecast, which is a measure of future demand, can
then be balanced against the available capacity using
traffic flow management.

The number of arrivals (landings) and the number of
aircraft leaving a Center in an interval of time, TΔ ,
are assumed to be proportional to the number of
aircraft in the Center at the beginning of the interval.
Following the notation in Figure 2 and using the
principle of conservation of flow (analogous to the
principle of mass balance in a control volume) in a
Center, the number of aircraft in Center at the next
instant of time, 1+k , can be related to the number
of aircraft in the Center at the current instant of time,
k , via the difference in number of aircraft that came
into the Center and the number of aircraft that that
left the Center as follows.
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The fractions ijβ s’ and jiβ s’ are obtained as

transition probabilities in (Roy, et al., 2003).  The

departures within Center i  are denoted by )(kdi .

For the purpose of modeling, these departures can be
split into two components- a deterministic one and a
stochastic one. The deterministic portion of the
departures )(kui  can be computed from filed flight

plans and from historical departure data. For
example, )(kui  can be set to the average departure

count derived from historical data.

The stochastic component of the departures, )(kwi ,

can be modeled by assuming a suitable distribution
such as, a Gaussian or a Poisson distribution. In such
a model, )(kwi , which can also be obtained from

historical data, represents the expected variation
around the deterministic component.

Figure 2: The components of aircraft flow
contributing to the traffic count in a given Center.

The discrete system in Equation (1) can be rewritten
in the standard State Space notation as:

€ 

x(k +1) = A(k)x(k) + B(k)u(k) +C(k)w(k) (2)

€ 

where,
• k  denotes the time instant defined by TkΔ ,

with 

€ 

ΔT being the sampling interval. In the
earlier work in (Roy, et al., 2003), it has been
shown that a 10-minute sampling interval
accurately approximates Center aircraft count.
This sampling interval has also been used for
generating the results presented in this paper;

• 

€ 

x(k)=

€ 

1x (k),... Nx (k)[ ] is the state vector with

the number of aircraft in the Centers at time 

€ 

k  as
its elements;

• 

€ 

u k( )= [ ])k(u),...k(u N1  is the control vector

with the number of aircraft departing (taking off)
from the Centers as its elements;

• 

€ 

w k( )=

€ 

1w (k),... Nw (k)[ ] is a vector for modeling

departure uncertainties;
• 

€ 

A k( )  is the state transition matrix that contains

the information of how flights transition from
one Center to the other Center.

The elements of the state transition matrix A  are
given by:

N,,1j;N,,1i;ji

;a ijij

LL ==≠

= β
    (3)

where, 23=N  is the number of Centers including
one for the international region. The off-diagonal

terms )(kaij  represent the fraction of aircraft

transitioning from Center i to the Center j at time
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k . This quantity can be calculated from historical
data and has been shown (Sridhar, et al., 2004) to be
slowly varying over time.

The diagonal terms can be calculated as:
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These terms represent the fraction of the aircraft that

remained in the Center i  during the thk  time step.

Numerical results in (Sridhar, et al., 2004) provide
error bounds for the number of aircraft in the Center
and show that a linear dynamic system with a few
transition matrices and Gaussian departure
distribution is adequate to represent traffic behavior
at the Center level.

3. EULERIAN TRAFFIC FLOW MODEL

The Eulerian modeling process (Menon, et al., 2003;
Menon, et al., 2004) begins with the definition of a
grid of surface elements (SELs) covering the region
of airspace being modeled. The surface element grid
is defined by latitude-longitude tessellation on the
surface of the earth in geocentric polar coordinates.
Each surface element has equal angular dimensions
in longitude and latitude as shown in Figure 3.
However, due to the spherical nature of the airspace
being modeled, surface elements far north or south of
the equator will have smaller physical dimensions
than those near the equator. One-degree latitude-
longitude increments are generally employed in
national-level traffic flow modeling (Menon, et al.,
2003; Menon, et al., 2004). The eight different en
route traffic flow directions within each surface
element are indicated in Figure 4. In addition to
these, the surface elements above airports will
include one output stream for landing aircraft. The
aircraft taking off from airports under a surface
element are included in one of the eight en route
traffic flow directions. Surface elements lying on the
boundary of the airspace being modeled will have
additional inputs representing traffic entering the
system from un-modeled airspace (e.g., international
flights).

Since the Eulerian model is discrete in space and
time, a sample interval τ must also be specified.
Although the spatial and temporal discretizations are
based mainly on the level of detail desired in the
model, due to the assumption that each surface
element is connected only to eight of its neighbors,
the sample time interval must be chosen so that no
aircraft in a surface element travels beyond its
immediate neighbors in a sample interval. Thus, the
dimensions of the smallest surface element and the
airspeed of the fastest aircraft in the airspace
determine the acceptable sample interval.

As in (Menon, et al., 2002; Menon, et al., 2003), the
air traffic flow pattern is modeled within each

surface element using two sets of parameters. The
first of these are the inertia parameters aii, one for
each of the eight streams representing the fraction of
the aircraft that remained from the previous sample
time. By definition, in any stream i, the fraction of
aircraft that left the SEL in the previous sample
interval is given by (1- aii).

The second set of parameters is the flow divergence
parameters βmn representing the aircraft that

switched streams within the SEL. Since the aircraft
in a stream may stay in it, or switch to any of the
other 7 en route streams, or land at an airport, for a
given SEL there is a matrix of 9×8 = 72 flow
divergence parameters. In order to satisfy the
principle of conservation of aircraft in a surface
element, for each stream n , the divergence
parameters to all the outputs must add up to unity,
i.e.;
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It is assumed that an aircraft will nominally remain in
the same stream, so the default  values of the
divergence parameters are:
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Figure 3 illustrates the model of a stream in a surface
element. The dynamics of the air traffic flow in a
SEL can be described using the inertia parameters
and the divergence parameters, through the principle
of conservation of aircraft. For instance, the
difference equation describing the air traffic flow in
the easterly stream in the surface element i, j can be
derived as (Menon, et al., 2002; Menon, et al., 2003):
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In this equation, x (k) denotes the number of aircraft
in the stream at the sample instant k, u(k) are the
aircraft flow rates held back in the stream through
flow control actions, y(.) is the air traffic flow rate
from the neighboring SEL, qdepart is the air traffic
flow rate joining the stream from airports under the
SEL and qexo is the air traffic flow rate entering the
airspace.  The control variables in this equation are
the air traffic flow rates u(k) due to metering actions,
and the departure traffic flow rates qdepart from the
airports under the SEL.



Figure 3.  Latitude-longitude tessellation used in
Eulerian flow modeling

Figure 4. Traffic flow directions in a Surface
Element
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Figure 5. Eulerian model of an air traffic  stream
in a Surface Element

The en route output equations for a surface element
can be written as:
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Moreover, the landing air traffic flow rate into the
airports under the SEL are given by:
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Multiple surface elements are required to model
realistic airspaces. In the present work, the
numbering convention of the surface elements (i, j) is
that the index j is increasing from left to right, in the
easterly direction, and i is increasing from bottom to
top, in the northerly direction. Air traffic flow models
of several SELs can be combined to form the overall
Eulerian model of the airspace, and can expressed in
a compact form as:
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The departure traffic may be subdivided according to
those airports where they will be controlled by a
ground delay program, and where they will not. It is
assumed that external traffic q exo cannot be
controlled directly. If the controlled inputs are
combined into a vector v(k), and all other inputs are
collected together into a disturbance vector w(k), the
dynamic equation for the airspace is of the form:

( ) ( ) ( ) ( ) ( )kwBkvBkxkA1kx 21 ++=+       (12)

The state vector x(k) can be initialized using traffic
data and then propagated forward in time. These
equations can be used to facilitate analysis and
synthesis of flow control strategies.

Typically, not all states are of interest for analysis or
for flow control. An output equation can be
formulated to isolate the variables of interest as:

( ) ( ) ( )kvDkxkC)k(y 1+=            (13)

The Eulerian air traffic flow model consists of the
time-varying difference equation for the state vector,
and the time-varying algebraic equation for the
output vector. These equations can be formulated for
surface elements in any desired region of the NAS,
and combined together to form a basis for analysis
and flow-control system design. Eulerian models are
then derived by examining traffic flows over a
specified sample time interval into and in between
the surface elements. These models are then used for
analysis and flow control system design. It has been
shown in (Menon, et al., 2002; Menon, et al., 2003)
that the Eulerian models can be used to carry out a
variety of analyses on the air traffic flow, such as
control labi l i ty,  reachabil i ty and model
decentralization. Automatic derivation of Eulerian
models from air traffic data has also been discussed
(Menon, et al., 2004).

An important application of the Eulerian models is in
development of quantitative decision support tools
for air traffic flow control. Recent research (Menon,
et al., 2004) has explored the application of the
model-predictive control technique (MPC) to the air
traffic flow control problem.



4. COMPARISON OF THE MODELS

Both models describe traffic flow as a system of
time-varying linear difference equations. As such the
main strength of the models described here is that all
the tools available for analysis of linear dynamic
systems can be applied to these models. The size of
the linear models is independent of the number of
aircraft in the system and depends on the number of
spatial elements representing the airspace. Table 1
compares the overall features of the two modelling
approaches.

Aggregate
Model

Eulerian
Model

Spatial
element

Air Route
Traffic
Control
Center

Eight-connected
latitude-longitude
tessellation of the
Airspace

Number of
neighbors
(Traffic Flow
Directions)

Dictated by
the airspace
connectivity

8

Size of state
transition
matrix

Fixed-order,
23×23

8 × (Number of
Surface
Elements)

Flexibility of
model
resolution

Fixed spatial
resolution

Lower-resolution
models can be
derived using
linear algebraic
transformations

Weather
effects
modeling

Center-level
weather
impact
modeling

Eight-directional,
Surface Element
level weather
impact modeling

Flow Control Center-level
strategic flow
control, and
rerouting.

Eight-directional,
Surface-Element
level strategic
flow control and
rerouting

Table 1. Comparison between the two models

The aggregation approach (Sridhar, et al., 2004)
provides a lower order, fixed-resolution model of the
airspace, while the Eulerian approach provides a
flexible resolution model. Each of them may be
useful in different aspects of strategic flow control
decision making.  Moreover, although there are
differences in the way they approach the airspace
modeling problem, they can each be used to verify
the accuracy of the other model.

5. CONCLUDING REMARKS
This paper discussed two different models for
describing aircraft traffic flow. The first approach
uses the airspace layout in terms of Air Route Traffic
Control Centers as the basic modelling element,

while the second approach represents the airspace
using eight-connected latitude-longitude grid. Both
approaches produce systems of time varying linear
discrete-time dynamic equations.  These can be used
to carry out air traffic flow analysis and to design
strategic flow control algorithms. Future research
will focus on deriving decision support tools for
strategic flow control using these models.
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